sábado, 25 de setembro de 2010

Físicos afirmam ter criado material mais magnético do mundo



Limites do magnetismo
A teoria afirma que a intensidade do magnetismo de um material tem limites, o que provavelmente está correto. Mas o que está sob suspeita é onde esse limite se encontra.
A equipe do Dr. Jian-Ping Wang, da Universidade de Minnesota, nos Estados Unidos, sintetizou um material que é 18% mais magnético do que se acreditava possível.
O super ímã é formado por oito partes de ferro e uma parte de nitrogênio, um cristal não muito estável, cuja fórmula é Fe16N2.

Origem do magnetismo
Segundo reportagem da revista Science, a chave para o supermagnetismo está na estrutura extremamente complicada do cristal de Fe16N2.
O magnetismo de um material decorre do giro dos seus elétrons. Cada elétron funciona como um minúsculo magneto, com um campo magnético alinhado com o eixo do seu spin - quanto mais elétrons giram na mesma direção, maior se torna o magnetismo do material.
No cristal de Fe16N2, cada átomo de nitrogênio fica no centro de um aglomerado de seis átomos de ferro, com dois outros átomos de ferro unindo os diversos aglomerados.
Os elétrons que fluem entre os aglomerados comportam-se como os elétrons do ferro comum. Mas os elétrons dos átomos que circundam o átomo de nitrogênio tendem a ficar "travados" no lugar.
Como resultado, garante Wang, esses átomos contribuem para o magnetismo total do material de forma mais intensa do que os átomos individuais, aumentando a intensidade desse magnetismo.

Super ímã
Apesar dos resultados excepcionais, outros pesquisadores estão vendo os resultados com cautela, porque esse mesmo material já havia sido anunciado como um "super ímã" antes.
Um experimento anunciado por pesquisadores da empresa Hitachi contrariou essas observações - mas ninguém conseguiu repetir o experimento, e o assunto continua controverso até hoje.
O grande problema reside justamente na dificuldade de fabricar cristais de Fe16N2, que é metaestável e tende a se "quebrar" em outras estruturas cristalinas.

A equipe de Wang, no entanto, argumenta que vem aprimorando as técnicas há anos e que agora é capaz de crescer amostras de Fe16N2 estáveis.
Se esses novos ímãs puderem ser produzidos comercialmente, poderá ser possível, por exemplo, fabricar cabeças de leitura de discos rígidos menores e mais eficientes, permitindo colocar mais dados na mesma área e dando novo impulso ao crescimento da capacidade de armazenamento magnético.



Bibliografia:

Heavy Fermion-like metal &alfa;"-Fe16N2 with giant saturation magnetization
Nian Ji, Xiaoqi Liu, Jian-Ping Wang
APS March Meeting 2010 Proceedings
http://arxiv.org/ftp/arxiv/papers/0912/0912.0276.pdf

http://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=material-mais-magnetico-mundo&id=010160100720

http://meioambiente.bicodocorvo.com.br/projetos/equipe-de-pesquisadores-afirma-ter-conseguido-criar-material-mais-magnetico-do-planeta

Um comentário:

  1. Podemos afirmar na teoria que o magnetismo de um material tem seus limites, tendo uma capacidade de repelir e atrair outros matérias. A chave da origem do supermagnetismos está na estrutura complicada do cristal de Fe16N2. O magnetismo de um material é criado pelo os elétrons, funcionando como um minúsculo magneto ou um campo magnético alinhado, quanto mais os elétrons giram na mesma direção, maior se torna o magnetismo do material.
    O cristal de Fe16N2 é formado por átomos de nitrogênio que ficam no centro de um aglomerado de seis átomos de ferro.
    Sabemos que os elétrons que fluem entre o aglomerado, comportam-se como os elétrons de ferro comum, junto aos elétrons dos átomos e os átomos de nitrogênio, "trancam" o lugar, assim tendo como resultado o Wang, átomos que contribuem para o magnetismo, e assim aumentando a intensidade desse magnetismo. O Fe16N2 ira trazer um grande avanço para o magnetismo e para a tecnologia.

    ResponderExcluir